Appendix for “FairGLite: Fair Graph Representation
Learning with Limited Demographics”

1 Theoretical analysis

This section provides additional theoretical analysis demonstrating the performance
guarantees of FairGLite: Specifically, for a binary classification task, statistical par-ity
is defined as: App=|P(§ = 1|s =0) — P (§ = 1|s = 1)|. We consider the binary
classification task and examine the properties of the Softmax function in this context.
Let P, and P represent the probabilities of class 1 (c;) and class 2 (cz), respectively.
The function Softmax(-) is Lipschitz continuous with a Lipschitz constant L. Due to
this Lipschitz continuity, the difference in output probabilities can be bounded by the
difference in input vectors:
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where h; is the node representation for Vv; € Sy and hj is the node representation for
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Building on this, we can rewrite the statistical parity as follows:
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where z; = Wlhgl), and W) is the weight matrix at layer /.

Hence, the upper bound of disparity of DP depends on the node representation dis-
parity. Given that the Graph Attention Networks (GAT) adopt the message passing by
assigning different weights to neighbor nodes. Hence, we can write the node aggrega-
tion process as follows:
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Building on this, the node representation disparity arising from the node aggrega-
tion process can be measured. Specifically, for a node $v_i$, the neighbor information
during the aggregation process is:
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Let each node v; have a node representation hl(l) subject to ,u(d) — Al < hz(-l) <
w9 + Al where the parameter A’ serves as a tolerance per layer indicating the allowed
deviation of the representation from group mean (;(?)) along each coordinate. Hence,
we can re-write the Equation 4 as follow:
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Building on this, for nodes v; € S4, we have:
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A similar way can be applied for S as follows:
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Building on this, the upper bound of the consequent representation discrepancy on
node representations between two demographic groups is defined as follows:
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Armed with this node representation disparity, the effect on statistical parity can
then be measured. Given that:
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As discussed previously, given that || f(h;) — f(h;)|| = 2|P1 — P»| < L||h; — hy]|.
Hence, we can rewrite it as:
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Therefore, the following inequality holds:

fz,), — Lz - z,@| < f(Zz')l < f(ZHw))l + Lz - Z, ||

Let z; = W(l)hz(-l) for node 7, and Zya) = W(l)ul(d), Z,) = W(l),ul(f) be the
group means in logits space.
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Considering the obtained h p, the following inequality holds:
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A similar expression can be derived for |zi — zu(f)|.
Hence, we can write the upper bound of the DP as:
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This completes the proof.
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2 Additional Experimental Results

We further investigated the sensitivity of FairGLite to hyperparameters a and b on the
NBA and Pokec-n datasets, as shown in Figure 1. Similar to the observations in Credit
and Pokec-z datasets, increasing a consistently enhanced both fairness and prediction
performance until reaching a threshold, beyond which improvements stabilized. For
hyperparameter b, the results demonstrated three distinct phases: initially, at low val-
ues, fairness constraints had negligible effects, reflecting minimal regularization. As b
increased to moderate levels, there was a clear improvement in fairness metrics, accom-
panied by a gradual decline in predictive accuracy, reflecting a stronger regularization
impact. Eventually, beyond a certain threshold (approximately e! for NBA and e? for
Pokec-n), further increasing b resulted in stabilized or slightly deteriorated fairness per-
formance.
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Fig. 1: Study on Hyper-parameters sensitivity analysis.

We further conducted ablation studies to assess the contributions of each FairGLite
module on the NBA and Pokec-n datasets, as shown in Figure 2. Consistent with the
Credit and Pokec-z datasets observations, removing the Fairness Constraint (FairGLite-
NF) reduced model fairness due to biases propagating directly into predictions. The
variant without the Graph Reconstruction Constraint (FairGLite-NG) exhibited a less
severe drop in fairness but demonstrated reduced predictive accuracy, underscoring the
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importance of structural information. Lastly, removing the Adaptivity Confidence Strat-
egy Module (FairGLite-NA) led to decreased overall performance. This reduction il-
lustrates the module’s critical function in dynamically weighting fairness constraints
based on prediction confidence, effectively balancing predictive accuracy and fairness
enforcement.
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Fig.2: Ablation study results for FairGLite, FairGLite-NF, FairGLite-NG, and FairGLite-NA.



	Appendix for ``FairGLite: Fair Graph Representation Learning with Limited Demographics''

